Stanford CS230 | Autumn 2025 | Lecture 2 Supervised, Self-Supervised, & Weakly Supervised Learning
Tags: [[study]], [[ai]]
Stanford CS230 | Autumn 2025 | Lecture 2 Supervised, Self-Supervised, & Weakly Supervised Learning
Date: 2026-01-24 20:31 Source: https://www.youtube.com/watch?v=DNCn1BpCAUY
Notes (상세 내용)
- [0:00:15] 핵심 개념 1: …
- [0:01:40] 예시: …
- [0:03:22] 핵심 개념 2: …
-
01:10: Today’s lecture Goal
- Better way to make decisions in AI projects
- Later Classes you will see
- Adversarial attacks and defences
- Deep Reinforcement Learning
- Retrieval Augmented Generation
- AI Agents
- Multiagent System
- Neural Networks
-
02:11: Today’s outline
- I. Recap’ of the week
- Il. Supervised Learning Projects
- Day & Night Classification
- Trigger Word Detection
- Face Verification
- III. Self-Supervised Learning & Weakly Supervised Learning Projects
- Image Embeddings
- Multi-Modal Embeddings
- IV. (If time allows) Adversarial Attacks
-
03:30: I. Recap’ of the week
- Input: Cat Image
- Output: 0 or 1
- Model = Architecture + Parameters
- How does the model learn?
- Gradient Descent Optimization
- Use a loss function: compare the ground truth
- If 0, get penalty in order to give feedback to the parameters
- Repeat the parameter updates
- Gradient Descent Optimization
-
![[mx-img-yqxomstoq41rll4rdbpdtjiz-pt5m36_77s.jpg Stanford CS230 | Autumn 2025 | Lecture 2 Supervised, Self-Supervised, & Weakly Supervised Learning - 05:36 50]] 05:36
Cue (질문/키워드)
[!cue] 핵심 질문/키워드 1
- Timestamp: 00:00
- Note: 여기에 강의 내용을 상세히 기록합니다.
- My Thought: (내 생각/연결 아이디어)
[!cue] 핵심 질문/키워드 2
- Timestamp: 05:30
- Note: 두 번째 핵심 내용입니다.
- My Thought: …
Summary (내 언어로 요약)
[!summary] Summary 이 비디오는 [주제]에 대한 [핵심 내용]을 다루고 있다. 특히 [가장 중요한 내용]을 강조하며, 이는 [결론]으로 이어진다. 이 내용을 통해 나는 [나의 깨달음]을 얻었다.
3줄 요약
Review Questions (복습용)
- (나중에 이 칸을 채우거나 AI에게 채워달라고 요청)
Cool Wind on Study